
Manual of Py2ONTO-Edit

1. Introduction

Py2ONTO-Edit is a Python script to extract and translation ontology terms.

Version: V1.0

Version of Manual: V1.0

Update date: August. 2025

2. Getting Started

2.1 Requirements:

Python >= 3.10

2.2 Package dependency:

Note: Py2ONTO-Edit supports running in command-line interface (CLI) and code

pip install -r requirement.txt

2.3 download local translation model

Note: Local translation functions require downloading the local Argos-Translate model. The model

file must be downloaded into the models folder in this project.

English to Chinese (en2zh):

- en_zh.argosmodel

- translate-en_zh-1_1.argosmodel

- translate-en_zh-1_9.argosmodel (suggestion)

English to German (en2de):

- translate-en_de-1_5.argosmodel (suggestion)

English to French (en2fr):

- en_fr.argosmodel(suggestion)

weblink: https://drive.google.com/drive/folders/11wxM3Ze7NCgOk_tdtRjwet10DmtvFu3i

or in Argos Official web page

- translate-en_zh-1_9.argosmodel (en2zh:suggestion)

- translate-en_fr-1_9.argosmodel (en2fr:suggestion)

- translate-en_de-1_0.argosmodel (en2de:suggestion)

weblink: https://www.argosopentech.com/argospm/index/

2.4 Other translation services

Note: You must enter your DeepL auth key, ChatGLM-130B auth key, and Gemini auth key in the

file 'translation_api_key_setting.yaml' to translate terms via Py2ONTO-Edit.

2.5 Usage

We built two Jupyter Notebook-based examples for Py2ONTO-Edit, please visit Usage-FOLDER

in our project in GitHub (https://github.com/MedportalProject/Py2ONTO-Edit/tree/main/Usage)

Use case in CIL:

Example in CLI.ipynb: https://github.com/MedportalProject/Py2ONTO-

Edit/blob/main/Usage/Example%20in%20CLI.ipynb

Use case in Python code: https://github.com/MedportalProject/Py2ONTO-

Edit/blob/main/Usage/Example%20in%20code.ipynb

2.6 Help of Py2ONTO-Edit

python editonto.py -h

2.7 Usage of PyONTO-Edit in programming environment (Python)

import all function of py2onto-edit

from editonto import *

load HumanDO.owl

humanDO = EDIT_ONTO("./HumanDO.owl")

1.1 Segmentation method 1: Global extraction method

Get all data under a single root node and store to new_onto.owl

humanDO.cut_part_onto('orofacial cleft')

2.1 Export all class data from ontology into csv file

humanDO.owl_to_csv("./new_onto.owl")

2.2 Translation with DeepL

humanDO.translate_terms_with_deepl("./part_onto.csv", "en2zh", "your-deepl-api")

2.3 Saving translated label data to the ontology

zh:Chinese label; fr:French label; de:German label

humanDO.add_Chinese_label('./new_onto.owl', './all_classes_with_deepl.csv', 'zh')

2.8 Usage of PyONTO-Edit in CLI

Task 1: only terms extraction

python editonto.py -o ./HumanDO.owl -m all -s "orofacial cleft"

Task 2: only terms extraction (selective depth extraction)

*Use EFO ontology

python editonto.py -o ./efo.owl -m select -s "cell type" -e "endothelial cell,kidney cell, stem cell"

Task 3: only terms translation

python editonto.py -o ./result/cut_onto.owl -m none -l "en2de" -t d

https://github.com/MedportalProject/Py2ONTO-Edit/blob/main/Usage/Example%20in%20CLI.ipynb
https://github.com/MedportalProject/Py2ONTO-Edit/blob/main/Usage/Example%20in%20CLI.ipynb
https://github.com/MedportalProject/Py2ONTO-Edit/blob/main/Usage/Example%20in%20code.ipynb
https://github.com/MedportalProject/Py2ONTO-Edit/blob/main/Usage/Example%20in%20code.ipynb

Task 4: extraction and translation of ontology terms

python editonto.py -o ./HumanDO.owl -m all -s "orofacial cleft" -l "en2zh" -t d

Note:

-l: select translation mode

en2zh: English to Chinese

en2fr: English to French

en2de: English to German

-t: select translation server

d: DeepL

l: argos translate

g: gemini

c: chatglm4

Limitation

1. Use of Well-Structured Ontologies is Required

The tool assumes a well-structured ontology as input; poorly structured or inconsistent models may

lead to errors during processing.

2. Manual Review Still Needed for Accurate Translation

Even under strict translation requirements, the output may require manual review and correction to

ensure semantic precision and domain accuracy.

3. Limited Language and API Support

Currently, the tool supports only a limited set of languages (English to Chinese, English to German,

English to French) and translation APIs (DeepL, Argos translate, Gemini, ChatGLM).

